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Lung  cancer  is  one  of the  most  prevalent  types  of  cancer  in  men  and  women,  and  is  a  leading  cause  of
cancer-related  death.  Early  detection  of  lung  cancer  may  profoundly  reduce  cancer  death  rates.  It is  there-
fore  extremely  important  to develop  laboratory  tests  to  detect  human  lung  cancer,  including  at clinically
asymptomatic  stages.  To  this  end,  mass  spectrometric  metabolite  analysis  was performed  on  blood  sam-
ples  collected  from  patients  with  lung  cancer  (N =  100)  and  age-matched  controls  (N  =  100).  Proteins  were
extracted  from  blood  plasma  with  methanol,  and  the  remaining  metabolite  fractions  were  directly  ana-
irect-infusion mass spectrometry
ung cancer
lectrospray ionization
lood plasma metabolites
iagnostics

lyzed using  electrospray  ionization  (ESI)  mass  spectrometry.  Mass  spectra  obtained  were  converted  into
binary  format,  aligned,  reduced  to  several  variables  by  principal  component  analysis  (PCA),  and  finally,
classified  as  cancer  cases  versus  controls  by  a support  vector  machine  (SVM)  algorithm.  Repeated  random
sub-sampling  validation  revealed  an  accuracy  of  classification  as  high  as  93.3%  (sensitivity  94.1%,  selec-
tivity  92.4%),  strongly  indicating  that  direct-infusion  ESI  mass  spectrometry  of  blood  plasma  metabolites
offers  great  clinical  potential  in  the  diagnosis  of  early-stage  human  lung  cancer.
. Introduction

Despite extensive research and clinical efforts to prevent and
anage lung cancer, it remains the leading cause of deaths from

ancer for both men  and women. Furthermore, lung cancer is
esponsible for the deaths of ∼1.3 million people worldwide every
ear, and this number is more than that for breast, prostate, colon,
nd pancreatic cancers combined [1,2]. More alarmingly, most lung
ancers are diagnosed in a late, symptomatic stage, thereby result-
ng in very unfavorable outlook. Five-year survival of patients with
ung cancer has not changed for last 15–20 years and is about 15%
n the USA and other developed countries [1].

Imaging radiology techniques are currently widely used to
etect cancerous lesions in the lung at the early stage. Unfor-
unately, however, the control trials have shown that their
pplication do not decrease mortality from lung cancer [3].  More-
ver, treatment options for the later stages of lung cancer are rarely
urative [4–9]. Correspondingly, it is extremely important that
iagnostic markers for lung cancer in its early, asymptomatic stages
e identified. The tumor markers currently available for detect-
ng lung cancer are characterized by insufficient sensitivity. For
xample, the Hamburger Group for the Standardization of Tumor
arkers has reported a sensitivity of 58.0%, 66.4%, and 58.6% for

∗ Corresponding author. Tel.: +7 903 7445171; fax: +7 495 2450857.
E-mail address: lokhovpg@rambler.ru (P.G. Lokhov).

387-3806/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2011.10.002
© 2011 Elsevier B.V. All rights reserved.

carcinoembryonic antigen (CEA), cytokeratin 19 fragments
(CYFRA), and neuron specific enolase (NSE), respectively [10,11].
It is suggested that the identification of markers associated with
higher sensitivities would have a profound impact on the rate of
death from lung cancer.

In metabolomics, a large number of metabolites can be detected
from samples and, in the case of bodily fluids, this capacity
offers a great potential for diagnostics. Correspondingly, recent
developments in metabolomics have showed promise in the
metabolite-based detection of cancer. The majority of metabolomic
studies on cancer, including those for lung cancer, have been con-
ducted using multi-stage protocols involving magnetic resonance
spectroscopy and mass spectrometry [12–18],  including metabolic
study of blood plasma [14,19–21].  As a result, numerous metabo-
lites have been identified, some of which are related to lung cancer
[17,18].

Among metabolomics technologies, direct-infusion mass spec-
trometry seems most suitable in developing a prototype for clinical
analysis. There are several examples in which direct mass spec-
trometry has been successfully used [15,16,22–27]. Results of
these studies have shown that the major advantage of direct mass
spectrometry is the high reproducibility of results. Due to this
reproducibility, subsequent effective classification of metabolite

mass spectra has been possible [28]. Direct-infusion mass spec-
trometry implies direct infusion of an analyzed biological material
to the ionization source of the mass spectrometer, without any
preliminary separation. This technique can be used for single-step
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http://www.sciencedirect.com/science/journal/13873806
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Table 1
Clinical characteristics of control subjects and lung cancer patients.

Characteristic Control subjects
(plasma)

Lung cancer patients
(plasma)

N (male/female) 100 (89/11) 100 (88/12)
Age  (median/range) 59/37–71 60/44–76
Smokers/non-smokers 77/23 93/7
Pathological diagnosis
(Sq/SCLC/Ad/LCC/Mx/NOS)a

– 58/7/12/4/9/10

Cancer stages (I/II/III/IV) – 24/12/50/14

Sq, squamous cell carcinoma; SCLC, small cell lung carcinoma; Ad, adenocarcinoma;
LCC, large cell carcinoma; Mx,  Mixed carcinoma; NOS, carcinoma non specified.
Cancer stages were based on the TNM classification.
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were used to identify the peak of the K Cl+ ion in mass spectra.
a Classification is according to International Classification of Diseases for
ncology.[40]

apid readily reproducible analysis of metabolites, which may  serve
s a prototype for clinical analyses. Therefore in this study, direct-
nfusion electrospray ionization (ESI) mass spectrometry of blood
lasma metabolites was studied as a prototype for the diagnosis of

ung cancer.

. Materials and methods

.1. Study design and subjects

The study is based on the epidemiological case–control study
f lung cancer carried out in Department of epidemiology and
revention of Russian N.N. Blokhin Cancer Research Center. Cases
ere recruited from Russian N.N. Blokhin Cancer Research Center

Moscow) and Moscow Cancer Dispensary. The study was approved
y relevant ethical review committee, and participants gave writ-
en informed consent. Cases were patients with newly diagnosed
ung cancer. Controls were recruited from the neighboring gen-
ral hospitals in Moscow with the same catchment areas as for
ases. Controls were selected from a broad range of diagnostic cate-
ories excluding malignant neoplasm and diseases considered to be
nrelated to tobacco smoking. The data on demographic character-

stics, education, life-style habits, occupational, family and medical
istory of cases and controls were collected by specially trained

nterviewers administering a standard questionnaire. Fifty-eight
ung cancer patients were histologically diagnosed as having squa-

ous cell carcinoma, 12 with adenocarcinoma, 7 with small cell,
 with large cell, 9 with mixed carcinoma, and 10 with carcinoma
on-specified (Table 1). The stage distribution of cancer patients
as as follows: stage I, N = 24: stage II, N = 12; stage III, N = 50; and

tage IV, N = 14 patients. The age ranges of controls and lung cancer
atients were 37–71 years (median 59) and 44–76 (median 60),
espectively. Current smokers constituted a larger portion of the
ase group (93%) than the control group (77%).

Blood samples for metabolomic analysis were obtained both
rom cases and controls within 2–3 days after admition to the clinic
nd before the start of any treatment. Blood was taken from the
ubital vein before the morning meal; blood samples (3 ml)  were
laced into glass tubes containing K2EDTA (BD Vacutainer, USA)
nd centrifuged within 15 min  after blood collection at 1600 × g
nd room temperature. Resultant blood plasma was then subdi-
ided into four equal aliquots that were pipetted into plastic tubes.
hese tubes were marked and frozen at −80 ◦C. The frozen blood
amples were transported in special thermo containers and kept
ntil analysis at −80 ◦C. The analyzed samples were subjected to
ne freeze/thaw cycle.
For the plasma deproteinization, aliquots (100 �l) were mixed
ith 100 �l of water (LiChrosolv, Merck, USA) and 800 �l of
ethanol (Fluka, Germany) and incubated at −20 ◦C for 10 min.
fter centrifugation at 13,000 × g (Eppendorf MiniSpin plus
ass Spectrometry 309 (2012) 200– 205 201

centrifuge, Germany) for 10 min, the deproteinized supernatant
was  transferred into clean plastic Eppendorf tubes. Solvent was
evaporated at 45 ◦C for 3 h using a vacuum SpeedVac evaporator
(Eppendorf). A dry residue was  dissolved in 100 �l of 95% acetoni-
trile (Acros Organics, USA) with addition of 0.1% formic acid (Fluka).
Samples were then sonicated using a Bandelin RM 40UH washer
(Sonorex Technik, Germany) 5 times for 30 s for better solubiliza-
tion of the residue. Samples were then centrifuged at 13,000 × g for
10 min  and the resultant supernatant was  used for mass spectrom-
etry analysis.

2.2. Direct-infusion mass spectrometry

Mass spectrometry analysis was  performed using a MicrOTOF-
Q hybrid quadrupole time-of-flight mass spectrometer (Bruker
Daltonics, Germany) equipped with an electrospray source of ion-
ization. The mass spectrometer was  set up to priority detection
of ions with the range from m/z 50 to 1000 at a mass accuracy
of 2–4 ppm. Spectra were recorded in the mode of detection of
both positive and negative ion charge. Samples were injected into
the electrospray ionization source with a glass syringe (Hamilton
Bonaduz, Switzerland) connected to a syringe injection pump (KD
Scientific, USA). The flow rate of samples to the ionization source
was  180 �l/h, and samples were injected in a randomized order
(e.g., control samples were run in between case samples). Mass
spectrometry analysis of all samples was  performed over the course
of a month (with 10 samples completed/working day). Mass spectra
were obtained in the DataAnalysis program 3.4 (Bruker Daltonics)
by summarizing 5 min  signals.

2.3. Mass spectra processing

Using the DataAnalysis program masses of ion metabolites were
determined from peaks in mass spectra. All peaks above noise level
were selected. Two peaks were considered to be related to the same
metabolite if their mass difference did not exceed 0.01 Da. Resultant
lists of masses of positively charged metabolite ions were pooled,
binned in intervals of 0.01 Da and were coded into the binary for-
mat, where ‘one’ is the presence of a measured metabolite mass in
an interval, ‘zero’ is the absence of this metabolite [15]. Resulted
binary matrix of mass spectrometry data was used for further anal-
ysis. Mass spectra processing was performed using a Matlab v.12
program (Mathworks, USA).

2.4. Binary matrix alignment

Binary matrix data were aligned according to the algorithm pre-
sented in Fig. 1. Briefly, negatively correlated neighboring lines
in binary matrices were combined. This action was  repeated sev-
eral times with stepwise reduction of the correlation coefficient
used to select neighboring negatively correlating lines. The result
of the alignment is shown in Fig. 2. Binary matrix alignment was
done using Matlab software. After alignment, uninformative lines
in binary matrices, which contained >80% zeros, were removed.

2.5. Correction of ionic inconsistency in blood plasma samples

Measured ion masses in combination with isotope patterns

2

All metabolite ions with peak intensities correlating (correlation
coefficient >0.15 or <−0.15) with the intensity of this peak, were
excluded from our analysis.
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Fig. 1. Algorithm of binary-coded mass spectra alignment. Realization of the given
a
i

2

a
P
s
u

2

p

F
i
m

lgorithm was  carried out using Matlab program. Algorithm results are presented
n  Fig. 2.

.6. Dimensionality reduction of mass spectrometry data

Binary matrix data were processed by principal component
nalysis (PCA) using the princomp function of the Matlab program.
rojections of binary matrix columns (corresponding to plasma
amples) on the first seven principal components, were further
sed for sample classification.
.7. Blood plasma samples classification

Blood plasma samples were classified by means of the sup-
ort vector machine (SVM) method using a linear SVM classifier

ig. 2. Fragment of a binary matrix of mass spectrometry data before and after alignmen
on  peaks are not adjusted with each other, and thus does not allow for statistical analysi

etabolite ion peaks are adjusted with each other, allowing statistical analysis. The dash
ass Spectrometry 309 (2012) 200– 205

(the svmtrain function) from the Matlab program. Coordinates of
binary-coded mass spectra projections on first seven principal com-
ponents were used as the input data for classification.

The efficiency of classification was tested by the ‘repeated ran-
dom sub-sampling validation’ method. It consists in removal of
randomly selected 10% of input data and training of the classi-
fier using remaining data with subsequent testing of the classifier
using the data, which was not included into the training set. Classi-
fication was  repeated 10,000 times and classification accuracy was
calculated as a mean value. The confidence interval for the accu-
racy of classification was  calculated by the method of Vapnik for
calculation of the confidence intervals proposed for the classifier
with a teacher [29]. Calculations were performed for the confidence
probability of 0.95.

3. Results and discussion

3.1. Mass spectrometry

Direct-infusion mass spectrometry analysis of blood plasma
samples resulted in detection of approximately 1500 positively
charged ions per sample. No significant changes in the number
of detected ions were found between controls and lung can-
cer patients. A typical mass spectrum is shown in Fig. 3. Peaks
in mass spectra representing metabolites with a mass-to-charge
(m/z) ratio up to 500 are shown. A characteristic distribution of
mass spectrometry peaks was observed in the region associated
with higher m/z ratios (Fig. 3), which corresponds to the detec-
tion of high-abundance plasma lipids such as phospholipids, di
and triglycerides, and lysophospholipids [16,30,31].  Correspond-
ingly, since the area above m/z 500 was  occupied by the peaks
of high-abundance plasma lipids, only peaks with a m/z ratio
≤500 were used as a diagnostic tool in the present study. Math-
ematical conversion of mass spectra into the binary code yielded
binary vector (i.e., metabolic bar-code, fingerprint, signature),
which represented multivariable characteristics of blood plasma,
where binary values indicate the presence or absence of metabo-

lite ions in specific m/z. Such binary coding simplifies further
mass spectrometry data alignment, and increases diagnostic accu-
racy up to 4–5% of what was empirically established in this
study.

t. (A) Matrix fragment before alignment, showing that the majority of metabolite
s. (B) The same fragment of a matrix after alignment, showing that the majority of

 specifies presence of a metabolite ion peak in a specific m/z cell of a matrix.
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Fig. 3. Representative mass spectrum of blood plasma metabolites. Metabolite mass
spectrum was obtained following the direct injection of deproteinized blood plasma
sample into an electrospray ion source of a hybrid quadrupole time-of-flight mass
spectrometer. Mass spectrum was obtained for positively charged metabolites. Area
above m/z 500 corresponds to peaks of high-abundance plasma lipids such as phos-
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holipids, di- and triglycerides, and lysophospholipids. Peaks with an area up to a
/z of 500 were evaluated for their potential to be diagnostic metabolites.

.2. Mass spectrometry data alignment

As several mass spectra are processed, it is important that spec-
ra are aligned to ensure that similar metabolite intensities are
orrectly matched in each sample. Without such an alignment pro-
edure, it is possible to make errors in identifying signals from
etabolites with similar molecular masses. Moreover, in the case of
ass spectrometry-based diagnostics, such adjustments are neces-

ary as alignment problems can arise when different laboratories
enerate mass spectra for diagnostics. In a recent study utilizing
ass spectrometers located in different medical centers, Semmes

t al. [32] indicated that problems with alignment are important
arriers that must be overcome to ensure that data from different
enters are compatible. Furthermore, Baggerly et al. [33] also iden-
ified alignment problems as a significant hindrance to achieving
eproducibility with samples collected within the same laboratory.

The present study offers simple and straightforward algorithm
or alignment adjustments to binary-coded mass spectra. This
lgorithm may  be useful in standardizing measurements taken

rom the same instrument or from many different instruments,
hen locations of corresponding peaks across spectra are incon-

istent. Fig. 2 shows that mass spectrometric data collected in the

able 2
evel of cations that affect ESI-mass spectra in blood plasma samples.

Ion Level in blood
plasma sample

Notation

H+ pH ∼2.8 Initial pH of blood plasma is constant and
equal to 7.35–7.45. However, blood plasma
samples prepared for ESI mass
spectrometry are premixed with formic
acid and have final pH ∼2.8.

Na+ 136–145 mM This level corresponds to physiological
conditions.

K+ 3.5–60 mM Blood plasma contains 3.5–5.0 mM of K+

ions.
Most abundant blood cells, erythrocytes,
contain 80–120 mM of K+ ions. Therefore,
final concentration of K+ ions in blood
plasma samples consists of initial plasma
K+ ions and K+ ions leaked from cells.

Other ions – Level of other ions is too low for
influencing ESI mass spectrograms.
ass Spectrometry 309 (2012) 200– 205 203

binary matrix, after processing, are aligned and therefore suitable
for further statistical analysis.

3.3. Correction of ionic inconsistency in blood plasma samples

ESI is a soft-ionization technique used in mass spectrometry to
produce ions. Ions observed by ESI-MS are quasimolecular ions cre-
ated by the addition of a proton (a hydrogen ion), denoted [M+H]+,
or another cation, such as sodium [M+Na]+ or potassium [M+K]+.
In each case, the detected mass depends on the mass of the added
ion. Therefore in the case of direct-infusion ESI-mass spectrome-
try, concentrations of these ions in samples should be constant, or
at least within a narrow range. Table 2 summarizes ions in blood
plasma samples that influence ESI mass spectra. Proton and sodium
ions do not influence ESI mass spectra due to their narrow con-
centration ranges. Potassium levels in plasma (3.5–5.0 mM)  must
be very stable to avoid the dangers symptoms of metabolic shock,
which begin to materialize when potassium levels exceed 5.0 mM.
Simultaneously, the range of potassium levels found within human
red blood cells is 80–120 mM [34], which is about 20-fold that found
in blood plasma. Furthermore, it is well known that potassium leaks
from cells when plasma is not immediately separated from col-
lected blood, or when blood has been temporarily stored, or plasma
is handled roughly [35,36].  Therefore, K+ concentration ranges may
vary widely across blood plasma samples, potentially disrupting ESI
mass spectra.

Looking at mass spectra is a very simple way  to monitor K+

concentrations in plasma during mass spectrometry-based diag-
nostics. Measured ion mass in combination with isotope pattern
allowed for the identification of potassium-containing ions, and
the most intensive among these ions are summarized in Table 3.
The ion peak corresponding to K2Cl+ was  shown to have the high-
est intensity and a characteristic isotopic pattern, which is easily
identified in the spectrum (Fig. 4A). Measurement of K2Cl+ ion
intensities in spectra confirmed that plasma samples had different
potassium levels (intensities were varied from 100 to 3400 units;
see Fig. 4B). Therefore, it was decided that all metabolites whose
intensities correlated with K+ level should be excluded from
further analysis due to the likelihood that their intensities reflect
K+ leakage from erythrocytes at sample preparation rather than
providing useful diagnostic information. Such peaks were found in
mass spectra by calculating correlation coefficient for intensities of
all metabolite ions with intensity of K2Cl+ ion peak (m/z 112.896).
This correction increased the final accuracy of the diagnostic

system by 15–20%, indicating that a constant level of potassium
ions in samples is essential for diagnostics based on direct-infusion
ESI-mass spectra. Otherwise, as in our case, all ions correlating
with the K2Cl+ ion peak should be excluded from analysis.

Table 3
The most intense potassium-containing ions identified in mass spectrum of blood
plasma metabolites.

Molecular mass (Da) Elemental
composition

Isotope patterna (%) Peak intensityb

Measured Calculated

96.921 96.922 KNaCl+ 100, 39, 2 1506 (51.5%)
112.897 112.896 K2Cl+ 100, 46, 5 2923 (100.0%)
170.854 170.854 K2NaCl2+ 100, 78, 20, 2 111 (3.8%)
186.825 186.828 K3Cl2+ 100, 86, 26, 3 23 (0.8%)
244.789 244.787 K3NaCl3+ 85, 100, 45,10 83 (2.8%)

Bold typed line corresponds to ion used for measuring potassium levels in blood
plasma samples.

a 100% corresponds to the most intense peak in the isotope pattern; peaks with
an  intensity of less than 2% are not shown in the pattern.

b The most intense peak was taken as 100% and the relative peak intensities are
shown in parentheses.
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Fig. 4. Fragment of ESI mass spectrum of blood plasma metabolites showing K2Cl+ ions (A) and distribution of potassium levels in blood plasma samples (B). The metabolite
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.4. Dimensionality reduction of mass spectrometry data

As a source of data for diagnostics, mass spectrometric
etabolite profiles, represent multivariable (multidimensional)

haracteristics of an organism consisting of hundreds of intensities
variables) of a metabolite‘s peaks in mass spectra. Direct applica-
ion of such multivariable data leads to overfitting of any diagnostic
ystem. Overfitting occurs when there are too many variables rela-
ive to the number of samples. A diagnostic which has been overfit
ill have poor predictive performance, as it can exaggerate minor
uctuations in input data. To avoid overfitting, the rule of 10–15
amples per variable should be followed. When this requirement
as maintained, the dimensionality of the mass spectrometry data
ere reduced by PCA. Therefore, the binary matrix was  replaced by

heir projections in the space of the seven principal components,
hich covered ∼80% (value returned by the princomp function)

f all variability presented in mass spectra. Thus, dimensionality
eduction was performed without essential loss of data presented
n mass spectra.

.5. Sample classification

Projection of binary-coded mass spectra in space of the seven
rincipal components allows their separation by a discriminating
lane into two  classes. This plane was built up by the Support
ector Machine (SVM) algorithm, which may  classify multidimen-
ional data by their separation into classes using formation of a
yperplane in a given multidimensional space. Formally, sample
eparation into classes is a model diagnostic system for detection
f lung cancer and efficiency of this system may  be determined

y testing. To this end, classification efficiency was tested using

repeated random sub-sampling validation’,  and the results were
sed to calculate diagnostic sensitivity, specificity, and accuracy
Table 4).

able 4
haracteristics of the mass spectrometry-based diagnostics of the lung cancer I–IV
tages.

Samples set Diagnostics characteristics (%)

Sensitivity Specificity Accuracy

I stage vs. N 100.0 92.4 93.9 ± 0.12a

II stage vs. N 91.4 92.4 92.3 ± 0.13
III  stage vs.  N 92.3 92.4 92.4 ± 0.11
IV  stage vs. N 93.0 92.4 92.5 ± 0.13
I,  II stages vs. N 97.1 92.4 93.6 ± 0.12
I–III  stages vs. N 94.3 92.4 93.3 ± 0.10
I–IV  stages vs. N 94.1 92.4 93.3 ± 0.10

a The confidence interval for reliability was calculated for the confidence proba-
ility of 0.95. N – the set of plasma samples corresponding to controls (N = 100).
 to an ESI device connected to a MicrOTOF-Q mass spectrometer tuned to detect
vels in blood plasma samples is shown as a histogram of K2Cl+ peak (m/z 112.896)

Table 4 shows that high accuracy in diagnosing stages I–IV of
lung cancer were obtained in this study. However, it should be
noted that high efficiency of diagnosis in early-stages of the dis-
ease (for example, 100% sensitivity for stage I), most likely does
not correlate with cancer progression in the organism. The small
size of tumors in the early stages of cancer, as well as the absence
of cellular specificity of almost all metabolites, makes detection of
cancer-specific metabolites in early stages improbable. Sensitiv-
ity in detecting lung cancer in its early stages may  be explained by
lung cancer etiology. For example, the most common causes of lung
cancer include long-term exposure to tobacco smoke [37] and air
pollution [38,39]. Therefore, it is probable that early cancer diag-
nostics are detecting exposure, rather than markers of disease, and
thus may  reveal an increased risk of lung cancer. If so, blood plasma
metabolite profiles would have predictive value.

4. Concluding remarks

This study demonstrated that mass spectrometry of blood
plasma metabolites has great potential as a tool for diagnos-
ing lung cancer. Diagnostic flow charts include blood plasma
sampling, sample deproteinization, metabolic profiling by direct-
infusion ESI-mass spectrometry, and data processing (binary
coding, alignment, correction of ionic inconsistency, data dimen-
sionality reduction, and sample classification). The correct choice
at each step of the diagnostic process prevented lost information
related to blood plasma metabolites, resulting in high diagnostic
accuracy for lung cancer, including early-stage disease.
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